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a b s t r a c t

High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra,
for a fixed amount of experiment time. This has led to ‘‘reduced-dimensionality” strategies, in which sev-
eral LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approx-
imate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite
direction, by adding more time dimensions to increase the information content of the data set, even if only
a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the
filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes,
even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra recon-
stitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spec-
trum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not
appear in the final spectrum, and are used solely to boost information content, we propose the moniker
hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can
be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky
for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very
coarse compared with natural line widths.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction A 4D experiment of size 64 � 64 � 64 � NACQ, with a minimum
The resolving power of high-dimensional (HD) NMR spectra has
been instrumental in solution protein structure elucidation [1–4],
now allowing large, interesting proteins and complexes to be stud-
ied [5–8]. High-dimensional (HD) NMR data sets have time-do-
main data with 3–5 dimensions and 2–4 interferometric or
‘‘indirect” time variables, tk. The direct acquisition time, tACQ, is
for data collection, yielding a complex data set C(t1, t2, t3, . . . , tACQ).
Data are usually acquired over a regular time grid for each of the
t1, t2, etc., independently and then transformed into 3–5D spectra
S(F1,F2,F3, . . . ,FACQ) in which each dimension has independent dig-
ital resolution SW1/N1, SW2/N2, . . . ,SWACQ/NACQ. This sampling
strategy suffers from a multiplicative time penalty arising from
the need for adequate digital resolution in each spectral dimension
independently. The total number of indirect points, NTOT, and hence
the minimum experiment time TMIN (assuming adequate sensitiv-
ity) increases rapidly as the number of indirect dimensions is
increased:

TMIN / NTOT / N1N2N3; � � � ð1Þ
ll rights reserved.
two-step phase cycle and acquisition of both N- and P-type data
sets for each of the three indirect dimensions, would require 221

� 2.1 million transients, taking 24.3 days at 1 Hz repetition rate.
Even 64 points may be marginal at high magnetic field, where the
spectral widths for both 13C/15N expand to quite a few kHz, and
13C/15N line widths may be surprisingly narrow when optimized
pulse sequences exploiting the TROSY effect [9–11] are used.

Strategies to speed up data collection have been proposed. Most
involve reducing the dimensionality of the spectrum by taking var-
ious cross-sections or subsets of time-domain points [12–16], often
corresponding to integral projections in the frequency spectrum. In
FT spectra, extending acquisition in a kth orthogonal dimension
cannot possibly improve the resolution of the integral projection
in which this same dimension is integrated over. The integral pro-
jection along a frequency axis yields essentially the first point of
the associated time-domain interferogram; the value of the first
point does not depend on how many subsequent time points are
acquired. This independence of the resolution of projections in FT
spectra is shown in Fig. 1.

While the digital resolution in any orthogonal frequency dimen-
sion is not altered in an FT spectrum, there is clearly far more infor-
mation in the higher-dimensional spectrum provided it can be
analyzed in the higher-dimensional space: degeneracies are resolved,
the number of resonances can be tallied more completely, and the
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Fig. 1. (a) A noise-free 2D spectrum at low resolution, showing the integral projections at the margins. Neither of the orthogonal projections allows a full count of the number
of peaks in the 2D plane. (b) The same spectrum as in (a) but with superior vertical resolution, allowing two peaks to be resolved. The horizontal spectrum obtained from the
vertical integral projection remains identical to the previous case, because in FT spectra the two frequency dimensions are independent.
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line shapes of the various peaks can yield a wealth of useful infor-
mation. In short, the resolution of the HD spectrum with n dimen-
sions is best assessed in n dimensions. It is mostly an artifact of
display technology and limitations of the human mind that neces-
sitates contouring planes or plotting traces to inspect the spec-
trum. The extra-dimensions unravel overlap, by separating and
visualizing each resonance. Integrating over any dimension is
clearly counter-productive to this aim.

With certain assumptions about the nature of the data, it may
be possible to do far better than FT methods, and materially change
the resolution in one orthogonal dimension– or all the other
dimensions. For example, if one were to assume that peaks of
interest were already resolved in a 2D spectrum derived from a pro-
jection of a 3D spectrum, then the additional frequency informa-
tion in the 3rd dimension for each resolved peak could be
retrieved with very few additional points in the 3rd time dimen-
sion, using parametric fitting of the data to a model with a single
peak at unknown frequency [17]. Likewise, with aggressive non-
linear methods, a small number of nD projections may allow more
accurate inference of peak positions in (n + 1)D spectrum than is
possible by straightforward Fourier transformation. The utility of
these more aggressive methods may also depend on whether sim-
ply peak position and total number of peaks, or detailed line shape,
intensity and line widths are of interest. For some assignment tasks
the exact intensity of each peak is relatively unimportant com-
pared to the exact frequency coordinates, whereas in NOE experi-
ments the peak intensities clearly matter.

Rather different altogether is the case in which the lower-
dimensional data is poorly resolved, is somewhat noisy, or in
which it is not clear whether or not there is overlap. In this case,
aggressive processing may result in a possibly misleading HD spec-
trum. This is shown schematically in Fig. 2, where the simple
noise-free 2D spectrum of Fig. 1 is reconstituted using the two
coordinate projections, by taking the minimum ordinate at each
position, the lower-value algorithm [14]. Obviously this result
could be improved with more 1D projections, and this example is
for illustration only, and certainly not as an example of the best
practice of the method. However, even many such projections fail
to reconstruct the true 2D spectrum. With more complex experi-
mental data containing significant noise, genuine peaks may be
lost, or artifacts introduced, limiting the utility of the rapid acqui-
sition for the task at hand, which is to gain rapid and accurate
information about the sample under study.
2. Results

2.1. Theory

2.1.1. A simple case of one versus two dimensions
Suppose, with acquisition time Tk, that two peaks are unre-

solved in some dimension k of a conventional multidimensional
FT spectrum. If the full width at half maximum, Dw, of each peak
is much less than 1/Tk, then their frequency spacing Df must be
somewhat less than 1/Tk, i.e., the limited acquisition is limiting
the resolution. What is the chance of resolving these two peaks
by increasing Tk? Clearly, if the two peaks happen to be nearly
degenerate (Df << Dw) then increasing Tk is fruitless. However,
if these same two peaks are displayed as a function of two
dimensions, and the line positions in the second dimension are
not tightly correlated with those in the first, then acquiring data
in this new dimension, even over the entire 2D time grid, might
be more efficient than acquiring an ever longer signal in the first
dimension alone. This is shown schematically in Fig. 3, where
two peaks are separated by 2.0 Hz in the horizontal dimension.
With a spectral width of 100 Hz, about 64 points are required
to resolve them using a 1D data set. However, if they were sep-
arated by 50 Hz in a second dimension, just a 3 � 3 time grid suf-
fices to indicate clearly the presence of at least two peaks using a
100 Hz spectral width in each dimension, even by conventional
FT analysis (with extensive zero-filling). Taking into account the
necessity of using both N/P (or sin/cos) data sets to achieve
absorption line shapes, a total of 18 points is the minimum for
the 2D realization. This compares very favorably to 64, reducing
the number of required points by a factor of almost four. If these
data were to be fit to two peaks, rather than simply transformed
into a spectrum, both could be extracted quite accurately, even in
the presence of some noise, for the 2D case. In the 1D case, noise
would necessitate more than 64 points to get anything like the
same reliability for frequency, line width, and amplitude. The dis-
placement of the peaks in the additional dimension facilitates
their free and clear characterization, just as the reduced E. COSY
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Fig. 2. (a) Integral projections obtained from a 2D spectrum, the high-resolution case of Fig. 1. (b) A 2D spectrum obtained from the two integral projections, by the ‘‘lower
bound” algorithm, in which the 2D spectral grid points are set according to the formula S(n,m) = Min{Ih(m), Iv(n)}, where Ih is the horizontal projection and Iv the vertical
projection. Clearly, two projections are insufficient to reconstruct the true 2D spectrum in this example.
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Fig. 3. A comparison of the amount of data needed to resolve two peaks that are very close in one frequency dimension and quite well-separated in a second orthogonal
frequency dimension. (a) A 1D projection using 32 time-domain points, zero-filled extensively before FT. The two peaks are unresolved. (b) The same as (a) but with 64 data
points. The two peaks are resolved. (c) The same as (a) but with only three data points (before zero-filling). The two peaks are completely unresolved. (d) A 3 � 3 2D FT
spectrum, extensively zero-filled in both dimensions. Because the peaks are widely separated in the second dimension, they are resolved with only 9 data points total (18
points to obtain an absorption-mode spectrum), even with FT analysis only. The large sinc-wiggles explain the features at the horizontal edges. Using parametric methods
that try to identify actual peaks, or otherwise avoid the transform-limited line widths, the well-separated 2D peaks are much easier to identify accurately than the
overlapping 1D peaks, especially in the presence of noise.
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multiplet patterns allow the measurement of J-couplings that are
far too small to observe directly [18]. This example serves to
illustrate an important point that bears emphasizing: HD NMR
spectra have higher intrinsic resolution than their lower-dimen-
sional pieces. Once the idea of independent 1D transformations
is abandoned, the HD paradigm becomes ever more compelling,
as very short data sets can exploit the uncorrelated line positions
in, e.g., protein backbone assignment experiments even though
none of the constituent 1D projections show any resolved fea-
tures at all.
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2.1.2. The one-dimensional filter diagonalization method
The filter diagonalization method (FDM) is a data analysis tech-

nique that has been in the literature for a number of years, and em-
ployed for 1D [19], 2D [20–22], 3D [23] and 4D [24,25] NMR
experiments of various kinds. The systematic development of the
equations, numerical aspects, and performance issues of FDM have
been reviewed [26]. Our brief, qualitative treatment here is to al-
low issues arising later on to be addressed clearly and to make
the surprising results understandable.

In the one-dimensional case, FDM efficiently and reliably solves
the problem of fitting a complex time signal of N points, sampled
on a uniform time grid, in terms of a linear combination of M com-
plex sinusoids:

cn ¼ CðnsÞ ¼
PM

k
dk expðif2pfk þ ikkgnsÞ

�
PM

k
dk expði ~xknsÞ; n ¼ 0; . . . ;N � 1

ð2Þ

with complex amplitudes dk (integral and phase) and complex fre-
quencies ~xk (position and width) over a spectral width SW ¼ s�1.
The line shape from Eq. (2) is Lorentzian; the discrete infinite Fourier
transform can be computed analytically [26] by introducing
uk ¼ expði ~xksÞ and z ¼ expð2pifsÞ and summing a geometric series:

Sðf Þ ¼ s �c0

2
þ
X1
n¼0

XM

k

dkðuk=zÞn
( )

¼ s �c0

2
þ
XM

k

dk

X1
n¼0

ðuk=zÞn
( )

¼ s
XM
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dk
1

1� ðuk=zÞ �
1
2

� �
ð3Þ

The first point correction and factor of t ensure the sum coverages to
the continuous Fourier transform in the limit s ? 0. The number of
peaks comprising the fit is M = N/2, half the number of frequency
grid points that would occur in a non-zero-filled FT spectrum. The
amplitudes and frequencies are obtained by an eigenvalue problem
whose input matrix elements depend only on the discrete measured
data points cn. We assume that some initial state U0 evolves in time
and that its autocorrelation function generates the signal:

cn ¼ ðU0jÛnU0Þ ð4Þ

where a complex symmetric inner product,

ðUjWÞ ¼ ðWjUÞ ð5Þ

allows for arbitrary signal phase. Diagonalizing Û is then equivalent
to determining both dk and uk for each peak:

Û¼
XM

k

YkÞuk Ykjðj & ðYkjYjÞ¼ dkj) cn¼
 

U0j:
XM

k

� kÞj uk � kjð
 !n

jU0

!

¼
XM

k

U0j� kÞ � kjU0Þun
k

��
ð6Þ

¼
XM

k

U0j� kÞ2un
k �

� XM

k

dkun
k ; ð7Þ

and Û itself, by translating the initial state in discrete time steps,
can generate other (non-orthogonal, unnormalized) states that
can be used to make up a basis fUng:

U0; U1 ¼ ÛU0; U2 ¼ ÛU1 ¼ Û2U0; etc: ð8Þ

Using the evolution operator itself to construct the basis is attrac-
tive because it should yield exactly the states that are needed to de-
scribe the dynamics. Simple representations of the unit matrix, 1̂ or
U(0) and Û or U(1) are obtained from the measured data [26] using
this primitive basis fUng:
Uð0Þmn ¼ UmjUnÞ ¼ð ÛmU0

���ÛnU0

�
¼

�
U0jÛnþmU0

�
¼ cnþm

�
ð9Þ

Uð0Þ ¼

c0 c1 c2 � � � cM�1

c1 c2 � � �
c2

� � �
cM�1 � � � c2M�2

2
6666664

3
7777775

ð10Þ

Uð1Þmn ¼ Umjð ÛUnÞ ¼ ÛmU0

����
Ûnþ1U0

�
¼ U0jð Ûnþmþ1U0

�
¼ cnþmþ1 ð11Þ

Uð1Þ ¼

c1 c2 c3 � � � cM

c2 c3

c3

� � �
cM c2M�1

2
6666664

3
7777775

ð12Þ

These data matrices also arise in the formulation of parametric Lin-
ear Prediction (LP) [27], which is closely related to FDM. The eigen-
value problem

Û � kÞj ¼ uk1̂ � kÞj ð13Þ

is then written

Uð1ÞBk ¼ ukUð0ÞBk ð14Þ

It is essential to include the matrix representation for the identity
operator because the basis fUng is not orthonormal. With the eigen-
values and eigenvectors in hand, the spectrum is then computed by
Eqs. (3) and (7). Equation (14) is a generalized eigenvalue problem
that has a number of library routines available to solve it. Matrix
diagonalization is one of the best-studied algorithms and has been
optimized extensively, making this approach efficient compared to
any attempt to directly fit the FID as damped sinusoids using a non-
linear least squares routine. Nevertheless, for realistic data sets, the
U matrices are (a) dense; (b) huge; and (c) possibly ill-conditioned
(Hankel structure). FDM overcomes some of these problems by
making linear combinations of the M time-like basis functions Uk

to form frequency-like basis functions W(fk) at M equally-spaced
frequency grid points across the spectral width, fk = k(SW/
M) � SW/2, k = 0, . . . , M � 1:

WðfkÞ ¼
XM�1

n¼0

expð�2pifknsÞUn ¼
XM�1

n¼0

expð�2pifknsÞÛnU0 ð15Þ

When we evaluate matrix elements of the U operators between ba-
sis functions W(fk) and W(fj) at widely different frequencies, the val-
ues are small compared to those near the diagonal– much smaller
than some intermediate point cj in the FID, which would be the cor-
responding value between the U basis functions. Indeed, the Hankel
structure of Eqs. (9) and (11) ensure that very large matrix elements
can occur far from the diagonal, as values along the anti-diagonal
direction are identical. The Fourier basis thus disentangles the
structure of the matrices to make them easier to diagonalize, in
the same way the FT separates out peaks in the spectrum, making
them easier to recognize than the interfering sinusoids and noise
comprising the raw FID. Small off-diagonal matrix elements, which
often refer mostly to noise, can be neglected according to time-
independent perturbation theory when there is a large frequency
difference between the states involved. This allows the giant matrix
problem to yield to a divide-and-conquer strategy in which smaller
submatrices, near the diagonal, are diagonalized sequentially. Each
submatrix corresponds to a small frequency window. The spectra
are calculated over each window by Eq. (3) or a number of other
similar formulas [26] and then smoothly summed up. In our imple-
mentation of multi-window FDM we overlap adjacent windows by
50% and use a cos2 weighting function to stitch the spectral esti-
mates together into a full spectrum [22], but this is somewhat arbi-
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trary. The spectra so obtained are usually surprisingly insensitive to
the details of the window size. This insensitivity is a prerequisite for
reliable results.

This background is important to facilitate understanding the
resolving power of FDM. Clearly, there are at most M peaks. If
the true spectrum contains more than M distinct peaks then the
fit cannot possibly be perfect. However, when there is no noise,
no degenerate frequencies in any of the dimension, and the data
conforms exactly to the model, then the fit obtained by FDM is per-
fect whenever the true number of peaks K is less than M. There is a
sudden ‘‘phase transition” in which the spectrum crystallizes into
clear view and then remains constant as more data is acquired.
When the calculation is over one window, the number of local ba-
sis functions in the window should be greater than the number of
signal peaks in the same window. These simple arguments get
more complex when there are very large peaks outside the win-
dow, but there are ways to handle this situation smoothly.

Sadly, in the presence of even small noise amplitudes, the num-
ber of peaks is always essentially M or more. Noise does not repeat,
does not follow any pattern, and cannot be cast as a certain fixed
number of Lorentzian peaks, so that real data must appear as some
number of ‘‘peaks” that is always at least M, frustrating FDM con-
vergence somewhat. What effect will this have on the attainable
resolution? The short answer is that if the number of signal peaks
K is less than M, and the noise amplitude is much smaller than
any of these peaks, then both the fit and the resolution are excel-
lent. As noise increases, it may tend to dominate, forcing precious
potential peaks to be ‘‘squandered” fitting the local noise instead.
There appears to be no ironclad guarantee, in this case, that the
output of the generalized eigenvalue problem is the best fit, in
terms of Lorentzian peaks and, even if it were, that the best fit
would result in the most useful spectral estimate. Even with a per-
fect fit the spectral estimate may not be accurate in the information
we seek: line positions, intensities, etc. of signal peaks, because the
perfect fit includes the noise. This makes the quality of the fit itself
a potentially distracting criterion. It is well known in the LP litera-
ture that the case M >> K mitigates the influence of the noise. In
FDM, this can be seen clearly by visualizing the grid of basis func-
tions in frequency. Qualitatively, a reasonable guideline might be
that the density of basis functions should be high enough that
there is at least one grid basis function W(fk) between the frequency
centers of any pair of peaks we wish to resolve. The sampling must
be of the order of the inverse frequency separation to achieve this
density. The same is true in FT spectroscopy, although in the FT
case the sampling must be long enough whether or not there is sig-
nificant noise, and the line shape may still be transform limited,
broad, and show sinc-wiggles. In FDM the line shape is always
Lorentzian, and the accuracy of the width depends on the noise;
when the latter is low, the former can be accurate. Sharp, narrow
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Fig. 4. Deterioration of a high-resolution FDM spectrum as a function of the percentag
identical amplitude, phase, and line width. The Nyquist range is 200 Hz and only four po
quantitatively with only four points. (b) 0.1% random time-domain noise. Both lines have
1.0% random time-domain noise. The sparse data is now insufficient to resolve the two lin
than the original frequency separation, is the result. Only the amplitude of the noise is alt
realizations, the results may show narrower or broader lines, and slight errors in the in
resonance lines with good resolution and accurate intensities will
result.

It might seem possible to ‘‘zero fill” the basis W(f) by adding
more frequency coordinates between the existing fk, using Eq.
(14) to calculate additional functions, and thereby increasing the
potential to pick up and ultimately discount any noise features.
However, the phrase ‘‘zero fill” here suggests the problem: as the
frequencies become substantially closer than the natural grid fk,
the functions W(f) just become more linearly dependent, making
U(0) closer to singular. The way the generalized eigenvalue problem
is numerically handled means that linear dependence is not fatal to
the algorithm, but artificially increasing the basis density without
increasing the information content of the signal does not yield
any notable improvement in resolution, either.

Fig. 4 shows a simple but illustrative 1D benchmark problem in
which the object is to resolve the two sharp Lorentzian lines in the
presence of varying amounts of noise and with varying numbers of
points in the FID. When the noise level is extremely low, just two
Fourier basis functions (one at the edge of the spectrum, and one in
the center) from only four time-domain data points can still detect
the small phase/amplitude shifts that occur when the FID is left-
shifted by one point, allowing the lines to be calculated fairly accu-
rately by Eq. (10). This case is analogous to being able to open a
weightless door by pushing very near the hinge. Although each ba-
sis function has a frequency center, they are fairly delocalized
when only four data points comprise the FID. Noise quickly de-
stroys the ability to resolve the two peaks as quickly, as shown
in the third panel.

As the noise increases it pays to have a higher density of basis
functions, i.e., sample more data and, in particular, having the local
basis function density be of the order of the peak spacing can be
quite important. (If the aforementioned door is heavy, using the
handle is imperative.) The FDM behavior, shown in Fig. 5, is quite
different from that of the FT spectrum. The FT spectrum requires
a data length of the order of the inverse width of the peaks to really
deliver all the potential resolution, and this requirement is inde-
pendent of the noise, or peak spacing. It also necessitates a much
longer acquisition time whenever the peaks are narrow.

2.1.3. Issues in multidimensional FDM
Suppose that a two-dimensional signal C(t1, t2) is obtained, in

which each of the one-dimensional projections shows substantial
overlap. What is the possibility of obtaining a fully resolved 2D
spectrum using FDM? Following the earlier discussion, the number
of 2D basis functions must exceed the number of 2D peaks. How-
ever, the former is proportional to the product of the number of re-
corded data points:

M ¼ N1

2
N2

2
ð16Þ
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Fig. 5. Behavior of the high-resolution FDM spectrum as a function of the number of data points acquired. Two narrow Lorentzian lines are located at 47 and 52 Hz, with
identical amplitude, phase, and line width. The Nyquist range is 200 Hz but only the relevant region is displayed. (a) 8 points. (b) 16 points. (c) 32 points. (d) 64 points. The
noise amplitude was about 1% in the time domain. For a peak spacing of 5 Hz in a 200 Hz spectral width, �40 Fourier basis functions would be an estimate of the density
needed to resolve the two peaks. This in turn would necessitate �80 time-domain data points. In fact two features emerge with only 8 Fourier basis functions (b), although
the result is only convincing with 16 Fourier basis functions (c) and the line widths are only correct when 32 Fourier basis functions can be used (d). This is close to the
estimate of 40 based on the argument that the local density be of the order of the frequency separation of the features to be resolved. The actual details depend on the
percentage of noise added.
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so that the 2D basis set can be very large if just one dimension has
good digitization, N2 >> N1. In most NMR experiments this can be
the direct detection dimension, that is, N2 = NACQ. By contrast, Fou-
rier transformation along the direct dimension gives N2 uncorrelated
1D FDM calculations, each with 1D basis size at most N1/2. If N1 is
not large, then the result may be poor for any F1 trace that happens
to contain more than N1/2 peaks. Peaks are not confined to a single
data point in F2. A given 2D peak will appear as a 1D peak multiple
times, on adjacent F2 traces along the F1 dimension. Large peaks
may have significant intensity on many points in F2, limiting the
number of weaker 1D peaks that can be identified accurately. The
1D peaks in F1 for adjacent F2 points also may not align precisely.
By contrast, a 2D FDM calculation of a 2D peak, wherever it is, ap-
pears only once in the 2D plane, requiring only one 2D basis function
to pin it down, and it cannot look like anything except a 2D peak.
This, in a nutshell, is why partial Fourier transformation can be
counterproductive compared to an up-front multidimensional
method, and why it may be possible to increase the dimensionality
of the data set and still reduce overall acquisition time. The total nD
basis size can become enormous as the number of dimensions in-
creases: an 8 � 8 � 8 � 4096 4D data set requires the solution of
four generalized eigenvalue problems of the form of Eq. (14), each
with 128k � 128k matrices containing �17.2 billion matrix ele-
ments. It is only with the advent of FDM that it is possible to enter-
tain problems of this enormous numerical scale.

2.1.4. Block sampling and deliberate aliasing
Non-uniform sampling (NUS) is a strategy to acquire a longer

interferogram, using the same number of points, by relaxing the
requirement to sample time points on a uniform grid at the Ny-
quist rate. Instead, some points are effectively skipped in favor of
others at greater evolution times. There must be a trade off, of
course, as very long evolution times have vanishing signal intensity
and hence little useful information. ‘‘Randomly” sampled data can-
not be processed by standard FT methods, but can be handled
using maximum entropy (MaxEnt) processing [27–29]. But con-
sider a block sampling strategy, in which a certain number of points
N2 are sampled uniformly at dwell time t2, and then a gap Mt is
introduced (usually M >> N2) a further N2 points are sampled, and
the process repeated N1 times. A 1D signal C(n2t2 + n1Mt2),
n2 = 0, . . . ,N2–1, n1 = 0, . . . ,N1 � 1, is obtained. We can, however,
consider the signal instead as a pseudo-2D signal:

Cðn1s1;n2s2Þ ¼ Cðn1Ms2;n2s2Þ � Cðn2s2 þ n1Ms2Þ ð17Þ

Fig. 6 shows a comparison between uniform sampling, non-uniform
sampling, block sampling, and a 1D block-sampled data set consid-
ered as a pseudo-2D data set. Processed as a two-dimensional sig-
nal, which is now sampled uniformly on a two-dimensional time
grid, conventional 2D FDM can be used for analysis; there are no is-
sues with unwanted artifacts, and the smaller spectral width in the
new, hidden, dimension means that the basis function density in
the new dimension will be higher than it was in the first dimension.
This strategy is potentially useful when the peaks cluster into
groups, i.e., a number of closely spaced peaks and then areas with-
out peaks. Many kinds of NMR spectra show these features. The first
dimension then establishes the true chemical shift values over the
true spectral width, and the second dimension boosts the resolution
so that all peaks are distinct and resolved. Once the narrow 2D res-
onances are identified, the second dimension can be integrated
over, giving back the original 1D spectrum with the correct frequen-
cies, and higher resolution. This block sampling strategy is thus
adapted to the different frequency scales in the spectrum.

Maximum entropy has also been used to create ‘‘virtual dimen-
sions” in which the width of lines are plotted in a second dimen-
sion, with the line position plotted in the first one, thereby
apparently increasing resolution [30]. The difference with the ap-
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Fig. 6. Various sampling strategies. (a) Uniform sampling at the Nyquist rate. (b)
Non-uniform sampling where, for simplicity, the points are still obtained at integer
multiples of the dwell time used in (a). (c) A block sampling strategy, in which data
are acquired in a repeating pattern in which multiple data points are skipped. (d)
Rearrangement of the block-sampled 1D data into a 2D data set in which there are
no missing data points but the spectral width in the new dimension is M times
smaller than the Nyquist range.
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proach here is that the data itself is interpreted as a higher-dimen-
sional signal, rather than simply displaying the data in a higher-
dimensional plot in which different parameters are shown in the
orthogonal dimensions.

It should be clear that sampling points further out in the data
set can markedly improve the resolution, much as the NUS strat-
egy. It is also possible to ‘‘fill in” the missing data points. The sam-
ples are all on the same time grid, so that if all points are sampled a
conventional signal results. This option is not usually exploited in
the NUS case, where samples are often obtained with a random
sampling schedule weighted by the expected properties of the
FID. The fully sampled 1D signal will have the best attainable res-
olution, as it contains the most information. However, it may be
possible to obtain a similar result more rapidly, and check its reli-
ability, by incrementally sampling another set of points that grad-
ually increases the block size N2. If the spectral features do not
change much when additional points are taken, then they have
converged to within the prevailing signal to noise ratio (SNR),
and acquisition can be terminated.

The strategy shown in Fig. 6 has a couple of subtleties. First,
complementary N- and P-type data are not available in the hidden
dimension when the latter results from omitting blocks of data. A
conventional FT spectrum would thus show ‘‘phase-twist” [34] line
shapes in the hidden dimension plane. Using multidimensional
FDM, only one data set is required: the fit is to a single phase-mod-
ulated multidimensional signal. In this case, only the P-type data is
available by simply skipping intervening points, but this apparent
deficiency is largely irrelevant as long as methods other than FT are
used to analyze the data.

We should note that the analysis of incomplete or ‘‘gapped”
data has a long history in both engineering [32] and astrophysics
[33]. The approach here, in which a particular kind of block-sam-
pled data is recast as a higher-dimensional signal has not, to our
knowledge, been described elsewhere.

The one disadvantage to expanding the dimensionality lies with
the factor of 2 in the denominator in Eq. (16). The first set of block-
sampled points gives a 1D basis of size M1. Adding a second block
at a much later time gives a 2D basis size that is also just M1. The
second block establishes the peaks as 2D, rather than 1D, but will
not necessarily contribute to improved resolution because both the
size of the basis and the number of peaks have remained fixed. The
noise will have been reduced, but the noise would also have been
reduced by simply sampling twice as long, without skipping any
data points, and doing so would give a 1D basis of size 2M1 which,
in principle, would have the capability to characterize twice as
many signal peaks. In benchmark problems where peaks are nearly
uniformly dispersed across a known spectral width, the 1D sam-
pling strategy is the most efficient. However, when peaks cluster
markedly, the block sampling strategy, with the introduction of a
hidden dimension, outperforms. This should not be any great sur-
prise: the more that is known about the data, the better the sam-
pling strategy can be. In particular, some protein experiments
can exploit the known position of resonances in the 15N–1H plane,
obtained from an initial 2D HSQC spectrum [34], to resolve closely
spaced peaks in other dimensions much more rapidly and with
better sensitivity, compared to extending the sampling along these
other dimensions in the usual way.

2.2. Examples of hidden dimension spectra

One common example of spectral features with different scales
is that of a 1D proton spectrum of a small molecule. At high field,
the chemical shift separation is much larger than the scalar cou-
pling, and resolved multiplets are observed. The spectrum there-
fore has signal peaks that are clustered near each other, and then
larger frequency regions devoid of signals. Although there is no
application for incomplete sampling of a 1D FID, it provides a
straightforward way to demonstrate the potential advantage of a
hidden dimension.

Fig. 7 shows the upfield region of the 1D spectrum of ethylben-
zene. With 4096 data points in the FID, 7(a), individual peaks in
each multiplet are resolved. Using only the first 22 points, 7(b)
leads to an FT spectrum, after zero-filling, in which peaks are very
wide, and show sinc-function oscillations in the baseline. Roughly
speaking, if there are rather less than eleven groups of peaks, then a
2D spectrum with just 22 points along the first dimension, and en-
ough points in the hidden dimension to characterize the number of
peaks within each group, should suffice. This is indeed the case, as
shown in Fig. 7(c). A 2D FDM calculation using a 22 � 8 data set,
followed by integration over the hidden dimension, is able to re-
cover almost all the original information in the full data set. In this
case, only 176 points out of 4096 are actually needed to obtain a
decent spectrum, a potential times savings of nearly 23-fold if this
were a multidimensional spectrum.

Another case in which the hidden dimension idea can be em-
ployed is in a conventional 13C–1H HSQC. In some compounds
the carbon-13 lines can be very close compared to the entire sur-
vey spectral width. Using conventional sampling, it may be time-
consuming to resolve the individual 13C resonances if the corre-
sponding multiplets in the proton dimension are also close, or
overlapping. In this case, a viable strategy is to collect a block of
data using the short dwell time corresponding to the full 13C spec-
tral width, and process it to observe whether signals appear clus-
tered or uniformly distributed, or perhaps whether there is some
ambiguity in some crowded parts of the 2D spectrum. Knowing
the approximate maximum peak frequency difference, an appro-
priate gap can be introduced (of the order of the inverse of this fre-
quency difference) and block sampling initiated. After four such
blocks the 3D FDM spectrum can be calculated, and the additional
dimension integrated out. It is usually a quick matter to decide
whether one, two, or more 13C resonances are present.

Fig. 8 shows an example from a zoomed region of the 13C–1H
HSQC of cholesteryl acetate. The assignment is indicated. There
are two close diastereotopic methyl groups, Me26 and Me27, with



Fig. 7. A simple example showing how to boost the resolution by using a hidden dimension. (a) Conventional upfield 1H FT spectrum of a standard ethylbenzene sample using
4096 data points. The multiplets are resolved. (b) The same FID as in (a) but using only the first 22 points, replacing the others with zeroes. Very wide transform-limited line
shapes are apparent. (c) The result of a 2D FDM calculation using 8 blocks of 22 points (from the same FID again), each block separated by a gap of 490 points so that the last
block is near the end of the 4096 point data record. The 2D FDM spectrum was calculated and then the hidden dimension, in which the true frequencies are aliased many
times, was then integrated out. Even though only 176 points were used in the calculation, the resolution and the relative intensities are quite good, and the multiplet
structure is again visible.
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13C resonances near 23 ppm, and with partially overlapping proton
resonances (the proton couplings are not resolved). Resolving
these two correlations in a single survey-mode 2DFT spectrum is
a time-consuming challenge. With 256 points in the 13C dimension,
the resolution is too poor to detect anything but a slight hint of two
13C frequencies, but with 512 points the expected two peaks
emerge. Using 6 blocks of just 16 points (96 increments total),
the 2D projection of the 3D FDM calculation is able to definitely re-
solve the two close peaks.

Of course it is not necessary that the hidden dimension simply
be one of the existing indirect dimensions over a smaller spectral
width. It could equally well be an entirely different, independent
dimension in which the resolution is better than the plane under
consideration. Once again, the multidimensional nature of FDM
may make a 3D experiment, in which the extra-dimension boosts
the information content, a superior strategy to a 2D experiment
in which many increments may be needed to resolve close peaks.
When the pulse sequence already contains fixed delays for magne-
tization transfer, the hidden dimension can be a constant-time
evolution during one of these fixed delays, thus optimizing both
sensitivity and resolution simultaneously. If the peak positions in
the hidden dimension are known beforehand, from a preliminary
experiment, then this information can be exploited to narrow the
spectral width while still avoiding the possibility of aliasing one
peak directly upon another one. If the peak positions are unknown,
the full Nyquist range should be used in the hidden dimension.

As an illustrative example, suppose a high-resolution rendition
of the 1HN(i)-13C0(i�1) plane of labeled protein were of interest. As
this is one of the planes of a 3D HNCO [31] experiment, the most
natural course would be to fix the 15N dimension, at tN = 0, and
increment the 13C0 dimension until sufficient resolution is
achieved. This 2D experiment should not be too time-consuming.
However, as the pulse sequence must have fixed delays to allow
15N magnetization to be transferred to and from the directly
bonded carbonyl carbon, incrementing the 13C0 dimension farther
and farther out can cause more magnetization losses due to trans-
verse relaxation. In the 3D experiment, the necessary fixed delays
are used to encode the 15N chemical shift in a so-called ‘‘constant-
time” evolution [35–37], avoiding any additional delays that would
be necessary in the alternative ‘‘real-time” experiment [38]. It thus
may make sense to use the 15N fixed delay, which must be present
in any event, as a hidden dimension to resolve peaks in the
1HN(i)–13C0(i�1) plane rather than using 13C0 evolution to do so. If,
in addition, the 15N resonance frequencies are known, a smaller
spectral width can be chosen in the 15N dimension, making sure
that peaks with nearly degenerate 1H frequencies are not acciden-
tally aliased on top of each other in the nitrogen dimension. If no
information on the 15N–1H plane is available, then the full Nyquist
range must be used. However, the number of increments in the
hidden dimension can still be very small.

Figs. 9 and 10 shows that this strategy bears fruit. Obtaining the
1HN(i)–13C0(i�1) plane by a conventional 2D strategy, using 24 C0

increments, results in a reasonable 2D FT spectrum that has a cou-
ple of congested regions near 8.5 ppm in the proton dimension. By
comparison, a 4 � 6 (15N � 13C0) 3D data set, in which the 15N hid-
den dimension is integrated over, clearly reveals resolved peaks in
the same region. Increasing the 2D acquisition to 128 C0 increments
reveals similar information but is a much longer experiment.
Applying 2D FDM to the 24-increment data set likewise fails to
completely resolve the region in question.

Fig. 10 shows zoomed views of the boxed regions of Fig. 9, to
show the details of the improvement in resolution.
3. Experimental

All spectra were obtained at 500 MHz on a Varian UnityPlus
NMR spectrometer with a conventional (room temperature)
5 mm HCN triax gradient Varian probe. Sample volumes were
approximately 800 ml. The ethylbenzene sample was the 0.1%



Fig. 8. Top: The structure of cholesteryl acetate, with conventional numbering of the carbons. Bottom: A zoomed region of a survey HSQC in the upfield methyl region. The
carbon-13 spectral width was 16,340 Hz. (a) Conventional 2D FT spectrum using 256 increments in the 13C dimension (�64 Hz resolution). The two close peaks near 23 ppm
are unresolved. (b) Same as (a) but with 512 increments (�32 Hz resolution). The two peaks near 23 ppm are resolved. (c) 2D projections of a 3D FDM calculation using 16
points over the 16,340 Hz spectral width, and 6 increments over a hidden dimension of 100 Hz. In the hidden dimension, the three basis functions per 100 Hz are enough to
boost the resolution so that two peaks are observed—with only 96 increments total. For the FT spectra both N- and P-type data were needed to obtain absorption-mode line
shapes. The 3D FDM data set used only P-type data in each of the 13C dimensions. The time taken to acquire these data sets, based on the same minimum phase cycling and
identical relaxation delays was (a) 158 min, (b) 316 min, and (c) 30 min, showing a factor of ten improvement in throughput by using a hidden dimension and FDM.

Fig. 9. The 1HN(i)–13C0(i�1) plane of human ubiquitin obtained using various numbers of 13C0 increments. See Section 3 for details. In each panel, the starred group of peaks are
from arginine sidechains, and are folded into the spectral region in the 13C dimension. (a) Conventional 2D FT spectrum using 24 increments in the 13C dimension. The boxed
region is unresolved. Only the zero-time increment in the 15N dimension, which was fixed, was used. (b) Same as (a) but with 128 13C0 increments. The boxed region shows
much-enhanced resolution. (c) 2D projections of a 3D FDM calculation using 6 13C0 increments and 4 15N increments. The data were obtained using constant-time evolution in
both indirect dimensions. The 15N constant time (2T in the literature) was the usual 12.4 ms required for magnetization transfer. Using the known positions of peaks in the
1HN–15N plane, a spectral width of 659 Hz (13.2 ppm) was employed in the 15N dimension. The 13C constant time 2T was 8.0 ms. Although only 24 joint increments were
taken, the resolution rivals that of the much longer experiment in (b). Using the full Nyquist range (36 ppm) in the 15N dimension gives somewhat inferior results, although
using 6 15N increments, rather than 4, again allows the full 3D spectrum, with high-resolution along each dimension, to be obtained.
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ASTM standard proton sensitivity sample. The cholesteryl acetate
sample was approximately 50 mM in CDCl3. The ubiquitin sample
was 1 mM in 90%/10% H2O/D2O at pH 4.7. Standard pulse se-
quences were used for the experiments, except that BIP [39] inver-
sion pulses were substituted in pairs for conventional 180� pulses
and care was taken to suppress artifacts that could arise from un-
wanted magnetization transfers, as described previously [40]. The
spectra are completely representative of what could be obtained in



Fig. 10. A more detailed view of the boxed regions in Fig. 9, showing the
comparison between (a) 24 C0 increments only, (b) 128 C0 increments only, and (c) 6
C0 increments and 4 15N increments. The first two panels are FT spectra, and the
third is a 3D FDM spectrum in which the 15N dimension has been integrated out to
give the 2D spectrum shown.
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any modern facility. At higher field and with superior sensitivity,
our approach will perform even better than shown herein. Further
details of all the experimental conditions, including files for the BIP
pulses that were employed, can be found in Supplementary
Material.

4. Discussion

We have shown that there are cases in which there is much to
gain by exploiting the full HD spectrum. Hidden dimensions, either
employing severe aliasing over a smaller spectral width, or a differ-
ent nuclear spin species altogether, can boost the content of the HD
data set. While none of the 1D or 2D FT projections of the data
shown in Fig. 9(c) show resolved features with so few increments
in the 15N and 13C dimensions, the full 3D object is fully resolved by
FDM, allowing post hoc high-resolution 1D or 2D projections to be
calculated if they are of interest. The flexibility of FDM, in which all
the data work together to determine the HD peak positions, makes
it possible to sample fewer points along dimensions that are unfa-
vorable for sensitivity reasons, and yet still obtain good resolution.
The onset of the sudden convergence of FDM, once the number of
multidimensional basis functions and the underlying SNR are ade-
quate, gives this approach a measure of reliability that is not ad-
dressed as easily by a disjoint collection of lower-dimensional
projections.

Of course, there are natural limits to employing HD spectra. If
too many magnetization transfers, all of which may require delays
to effect, are needed, then sensitivity may suffer even if resolution
is boosted. In the extreme case of many dimensions there may be
too little SNR to employ FDM analysis at all. However, when an un-
used dimension is already present along with the associated delays,
as in the HN(CO)CA experiment [36], the methods described here
are quite applicable and may lead to superior resolution for the
same instrument time.

There is an interesting connection between orderly skipping of
data points and the resulting density of basis functions in a higher-
dimensional space. Our results seem to indicate that, for unknown
peak dispositions within a given Nyquist range, simple uniform
sampling is usually the best option for FDM. When peaks cluster
narrowly or appear in groups, or if some specific question regard-
ing close unresolved features is to be settled, then block sampling
may offer some distinct advantages.

5. Conclusions

Filter diagonalization can be a speedy and effective way to ana-
lyze NMR data that has sufficient SNR and is well matched to the
assumption of a finite number of multidimensional Lorentzian
peaks. The ability of FDM to process just P-type data and still ob-
tain absorption-mode line shapes is useful in hidden dimension
spectra, where in some cases the corresponding N-type data set
is not readily obtained. Although the FDM algorithm does not
use prior knowledge per se, if peak positions are thought to be
known from a previous experiment, they can be exploited to nar-
row down the spectral range, allowing aliasing to occur as long
as no accidental degeneracies result. Optimizing data acquisition
in this way allows surprisingly short time-domain data sets to de-
liver very high-resolution spectra, and will be generally useful for a
large class of commonly-used NMR experiments.
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